Fast Detection of Alternative Route under Unknown Failure on SDN Network

Takumi Matsuura †, Hiroki Nakayama ‡, Tsunemasa Hayashi ‡, Katsunori Yamaoka †

† Tokyo Institute of Technology, Japan
‡ BOSCO Technologies Inc., Japan
What is silent failure?

- Difficult to detect failure point automatically
 - ex. failure beyond the OAM function’s coverage, a human error

- Happen under unknown situations
 - Difficult to specify the situation

- Various tests are required for localization

⇒ Long-term measurement is required
Example of silent failure (1/2)

How to shorten QoS degradation term?

- An alternative route is effective

Globecom2017 CQRM

T. Matsuura, H. Nakayama, T. Hayashi and K. Yamaoka

Fast Detection of Alternative Route under Unknown Failure on SDN Network
Example of silent failure (2/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Silent failure</td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>Alternative route configuration</td>
<td>Localization</td>
<td>Fix</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>QoS degradation</td>
<td></td>
</tr>
</tbody>
</table>

- What if an alternative route is not found immediately?
 - The flow’s allowable delay may **not** be satisfied
Strategy

An alternative route for recovery from silent failure

- Localize the failure
 - pros: Flexible route search
 - cons: Long-term measurement

- Avoid all suspicious nodes and links
 - pros: Minimum measurement
 - cons: An allowable delay may not be satisfied

A method to quickly detect an alternative route within the flow allowable delay
Key idea

- Suspicious-region pruning by recursive division

Alternative route detection

Suspicious-region pruning

Region division

Fault

OK
SDN

- Flexible route management
 - Traffic management per flow
 - Easy to change flow route

- Partial network measurement

A method to configure an alternative route quickly by using SDN functions

Globecom2017 CQRM
T. Matsuura, H. Nakayama, T. Hayashi and K. Yamaoka
Fast Detection of Alternative Route under Unknown Failure on SDN Network
SDN network model

- $G = (V, E)$: A non-directed graph
- f: A degraded flow
- P_{origin}: The route of flow f in the initial condition
- P_{fault}: The route that contains a failure point = Suspicions-region
- P_{alt}: An alternative route of flow f
Flowchart

Alternative route detection phase

$P_{\text{fault}} < P_{\text{origin}}$

Suspicious-region pruning phase

The proper alternative route is found

End

End

The suspicious region cannot be divided

P_{fault} is removed from the network

Search for P_{alt}

Is allowable delay satisfied?

Can P_{fault} be divided?

Divide and overwrite P_{fault}
Example (1/4)

Remove P_{fault} from network

Search for P_{alt}

Is allowable delay satisfied?

NO

Can P_{fault} be divided?

YES

Divide and overwrite P_{fault}

Allowable delay: 15

$p_{\text{origin}} = s, 1, 2, 5, 6, 7, d$

Failure happens

Suspicious-region P_{fault}
Example (2/4)

Remove P_{fault} from network

Search for P_{alt}

Is allowable delay satisfied?

Can P_{fault} be divided?

Divide and overwrite P_{fault}

Allowable delay: 15

Remove P_{fault}

Search for alternative route P_{alt}

Delay = 17 → Not satisfied

Globecom2017 CQRM
T. Matsuura, H. Nakayama, T. Hayashi and K. Yamaoka
Fast Detection of Alternative Route under Unknown Failure on SDN Network
Example (3/4)

Remove P_{fault} from network

Search for P_{alt}

Is allowable delay satisfied?

Can P_{fault} be divided?

Divide and overwrite P_{fault}

Allowable delay : 15

OK

Divide the region

Fault

Globecom2017 CQRM
T. Matsuura, H. Nakayama, T. Hayashi and K. Yamaoka
Fast Detection of Alternative Route under Unknown Failure on SDN Network
Example (4/4)

1. Remove P_{fault} from network
2. Search for P_{alt}
3. Is allowable delay satisfied?
 - NO
 - Can P_{fault} be divided?
 - NO
 - YES: Divide and overwrite P_{fault}
4. Search for P_{alt}
5. Delay = 13 → Satisfied
6. Remove P_{fault}
7. Allowable delay : 15
8. End
Evaluation Model

- Network: SDN architecture
 - Partial network measurement
 - Traffic management per flow

- Link bandwidth: sufficient
 - The transmission delay is included in the link delay

- SDN controller’s resources: sufficient
 - The computation time for Dijkstra’s algorithm and route configuration is omitted

- The number of faults: one
 - The silent failure happens at ONLY one node/link
Parameter

- Default setting

<table>
<thead>
<tr>
<th></th>
<th>Random graph (ER model)</th>
<th>Scale-free graph (GLP model)</th>
<th>Data center graph (Fat tree model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>3000</td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td>Average degree</td>
<td>3.98</td>
<td>4.03</td>
<td>4.8</td>
</tr>
<tr>
<td>Link cost</td>
<td>5~15[ms] (Uniform distribution)</td>
<td>10[ms] (constant)</td>
<td></td>
</tr>
<tr>
<td>Allowable delay</td>
<td></td>
<td>60[ms]</td>
<td></td>
</tr>
</tbody>
</table>

- Conventional method
 - Localizing method by the sequential search
Effect of allowable delay

- Localizing fault point: 55
 - Proposed: 55
- Localizing fault point: 65
 - Proposed: 65

- Localizing fault point: 50
 - Proposed: 50
- Localizing fault point: 60
 - Proposed: 60

Hop count

ER model

GLP model

Good
Effect of average degree

![Graphs showing the effect of average degree for ER and GLP models.](image)

- Localizing fault point: 3
 - ER model: Proposed: 3
 - GLP model: Localizing fault point: 8
 - GLP model: Proposed: 8

Globecom2017 CQRM
T. Matsuura, H. Nakayama, T. Hayashi and K. Yamaoka
Fast Detection of Alternative Route under Unknown Failure on SDN Network
Evaluation (3/3)

- Fat tree model

![Diagram showing hop count vs. average number of failure measurements with points indicating good localization behavior.]

Localizing fault point
Proposed

Globecom2017 CQRM
T. Matsuura, H. Nakayama, T. Hayashi and K. Yamaoka
Fast Detection of Alternative Route under Unknown Failure on SDN Network
Summary & Future Works

■ Summary

➢ A fast configuration method of alternative routes on SDN architecture
➢ Combination of alternative route detection phase and suspicious-region pruning phase
➢ The proposed method greatly outperforms the localizing method, especially when the average degree is large

■ Future works

➢ Analysis in realistic condition
➢ Improvement of the algorithm