

A Host-based Performance Comparison of 40G NFV Environments Focusing on Packet Processing Architectures and Virtual Switches

R. Kawashima, S. Muramatsu, H. Nakayama T. Hayashi, and H. Matsuo

Nagoya Institute of Technology

* Backgrounds

- NFV
- Related work

Packet Processing Architectures

- Virtual Switches
- Evaluation
- Conclusion

Network Functions Virtualization (NFV)

Traditional Router - Martin Contraction of Contract ITTAL ALL THE FW EPC (HW-based) • High cost Low flexibility • Closed

Host Architectures in NFV

Related Work

Performance of baremetal servers [1][2]

• They focused on performance bottlenecks

Performance of KVM and Container-based virtualization [3]

- [1] P. Emmerich et al., "Assessing Soft- and Hardware Bottlenecks in PC-based Packet Forwarding Systems", Proc. ICN, pp. 78-83, 2015.
- [2] S. Gallenmüller et al., "Comparison of Frameworks for High-Performance Packet IO", Proc. ANCS, pp. 29-38, 2015.
- [3] R. Bonafiglia et al., "Assessing the Performance of Virtualization Technologies for NFV: a Preliminary Benchmarking", Proc. EWSDN, pp. 67-72, 2015.

Combination of PM and VM architectures and vswitches

Throughput and Latency/Jitter

Intel and Mellanox 40GbE NICs

SR-IOV

Backgrounds

- NFV
- Related work
- Packet Processing Architectures
- Virtual Switches
- Evaluation
- Conclusion

Packet Processing Architecture

A way to forward packets (NIC <=> Applications)

- Interruption or Polling
- Single core or Multi cores
- Kernel space or User space
- Packet buffer structure
- Packet buffer management

The architecture has a major effect on the performance !

Three Architectures

Backgrounds

- NFV
- Related work
- Packet Processing Architectures
- Virtual Switches
- Evaluation
- Conclusion

Virtual Switch

A virtual switch bridges the host and VMs

Six Virtual Switches

Name	Running Space	Architecture	Virtual I/O Support
Linux Bridge	Kernel	NAPI	TAP/vhost-net
OVS	Kernel	NAPI	TAP/vhost-net
VALE	Kernel	Netmap	(QEMU)
L2FWD-DPDK	User	DPDK	-
OVS-DPDK	User	DPDK	vhost-user
Lagopus	User	DPDK	(to be supported)

Backgrounds

- NFV
- Related work
- Packet Processing Architectures
- Virtual Switches
- Evaluation
- Conclusion

Clarify performance characteristics of existing systems

Propose appropriate NFV host environments

Find a proper direction for performance improvement

Experiment 1 (Baremetal)

Physical	Server 1	Server 2 (DUT)	
OS	CentOS 7.2		
CPU	Core i7-3770 3.40 GHz	Core i7-6700K 4.00 GHz	
	(4 cores with HT)	(4 cores with HT)	
Memory	64 GB	32 GB	
VMM	-	KVM	
NIC	Intel Ethernet Converged Network Adapters XL710		
	Mellanox ConnectX-3 EN		

Throughput

Throughputs differ depending on the NIC type

Throughputs with short packet sizes are far from wire rate

Latency

L2FWD-DPDK and Lagopus show worse latency

Jitter values are less than 10 µs

Physical	Server 1	Server 2 (DUT)	
OS	CentOS 7.2		
CPU	Core i7-3770 3.40 GHz	Core i7-6700K 4.00 GHz	
	(4 cores with HT)	(4 cores with HT)	
Memory	64 GB	32 GB	
VMM	-	KVM	
NIC	Intel Ethernet Converged Network Adapters XL710		
	Mellanox ConnectX-3 EN		

Virtual	VM (Experiment 2)	VM (Experiment 2)	
OS	CentOS 7.2		
vCPU	2 cores		
Memory	4 GB		
vNIC	virtio-net		

Throughput

SR-IOV

SR-IOV shows the best performance !

SR-IOV lacks flexibility of flow handling

Adequate NFV Host Environment

Backgrounds

- NFV
- Related work
- Packet Processing Architectures
- Virtual Switches
- Evaluation

Conclusion

Summary

- We have evaluated NFV host environments with 40GbE
 - > A NIC device affects performance characteristics
 - DPDK should be used for both the host and the guest
 - We cannot reach the wire rate with short packet sizes
 - Virtualization worsens both throughput and latency
 - SR-IOV showed better throughput and latency

Future Work

- Further evaluations
 - VALE/Netmap based virtualization
 - VALE and Lagopus on the VM
 - Bidirectional and lots of flows