An Implementation Model and Solutions for Stepwise Introduction of SDN -A proposal of AP-GW model-

Hiroki Nakayama[†], Tatsuo Mori[‡], Satoshi Ueno[‡], Yoshihide Watanabe[‡], Tsunemasa Hayashi[†] †BOSCO Technologies Inc. ‡NTT Communications Corporation

> **BOSCO** Technologies

Background

- Software-Defined Network (SDN) has been interested in the field of network management.
 - It enables flexible and uniform management.
 - It has been expected to overcome the issues of network administrations.
 - Reduction of human error by reducing human intervention.
 - Providing high quality network with small cost by integrating network resource.
- Example of actual use case
 - Data Center
 - Using network resource with aggregated control
 - Wide Area Network
 - Rapid control against service dependent network
 - Security
 - Countermeasure against DDoS

Problem on conventional SDN implementation model

- Adaption against conventional network protocols
 - Necessary to handle traditional network routing protocols.
 - Implementing against closed local network
 - Requires to change almost all of the switches in the network
- Issues on the scalability
 - Load against controller increases depending on the scale of controlled network

Objective

- Propose the stepwise implementation AP-GW model for SDN.
 - Adaption against traditional network routing protocols.
 - Improvement of scalability by distributing controllers.
- Cooperation with traditional IP networks and implementation of network resource management faculty.
 - Run Quagga on each SDN switches to exploit management function of traditional IP network resources.
 - Run SDN controller on each SDN switches to construct a hierarchical and de-centeralized structure.
- Implementation of prototype of proposed model.
 - Demonstrate that our proposal can be useful.

Proposal of AP-GW

- Improvement of scalability
 - Hierarchical structure enables to distribute the load of controller.
 - Processing load derived by adapting against traditional routing protocol can be reduced.
- Possibility of stepwise implementation
 - SDN can be implemented with small implementation costs.
 - Synchronizing between flow-table and FIB for internet routing

Implementing each module on SDN switch

Quagga on Linux machine

Quagga on SDN switch

- OF ports cannot send out packets without OF functions.
 - Enable daemon program to communicate with others via OF ports.
 - Functions to packet out local transferred packets (SDN-NAPT).
- Packet transfers are based on flow information.
 - Translation function between routing information and flow entry.

Outline of SDN-NAPT

Gl	obal	Local (Loopback)				
dst src		src	dst			
10.10.0.4:179 10.10.0.1:37348		127.0.0. <mark>2:</mark> 8179	127.0.0.1:44156			

- RAW socket for internal packet translation and OF function for external packet translation are used for communication.
 - RAW socket is adopted to support the equivalence of translation.
 - Not only BGP but also any service can be provided.

Implementation of SDN-NAPT

- Loop back address will be default gateway from the local service.
 - IP address of it self cannot be set as default gateway.
 - IP address of SDN controller have to be set as destination address.

- BGP makes a connection only against BGP peer node.
 - Spoofing function against BGP process is required.
- BGP establishes peer connection.
 - It is necessary to notice the information of destination node to controller for an active connection from BGP process.

Sequence of session initiation of SDN-NAPT

Translation of routing information to flow entry

• Correspondence between routing information and flow entry

Kernel routing table	Flow entry
Destination	match : nw_dst
Gateway	actions : setfield
Metric	priority
Iface	actions : output

- MAC address is required to be handled by flow entry, where kernel routing table does not.
- Example of translation
 - Kernel routing table

# route -n									
Kernel IP rout	ting table								
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface		
20.10.0.0	10.10.0.2	255.255.0.0	UG -	0	0	0	eth1		

- Flow entry

```
# ovs-ofctl dump-flows br0 --protocol=OpenFlow13
OFPST_FLOW reply (OF1.3) (xid=0x2):
    cookie=0x0, duration=2.976s, table=0, n_packets=0, n_bytes=0,priority=1000,
    ip,nw_dst=20.10.0.0/16 actions=set_field:08:00:27:e0:db:bf->eth_dst,
    set_field:08:00:27:bf:22:e9->eth_src,output:2
```


Evaluation environment

- Conducted an operational verification
 - Correct BGP communication between OFS and each GWs
 - Routing information and flow entry of each switches

Evaluation result

• Dump of packets between GreenGW and OFS

x _	•	dumpEth0_	1.pcap [Wires	hark 1.10.	5 (SVN Re	v Unknown fro	m unk	(nown)]	<u>1</u>
File	Edit View	Go Capture	Analyze Statistic	s Telephor	ny Tools Int	ternals Help			
No.	Time	Source	Destination	Protoco	l Length	Info			
	3 0.113349	10.10.0.2	10.10.0.1	TCP	74	59110 > bgp	[SYN]	Seq=0 Win-	146
4	4 0.158063	10.10.0.1	10.10.0.2	TCP	74	bgp > 59110	[SYN,	ACK] Seq=	OPFN
	5 0.158145	10.10.0.2	10.10.0.1	TCP	66	59110 > bgp	[ACK]	Seq=1 Ack	
	6 0.158430	10.10.0.2	10.10.0.1	BGP	119	OPEN Message	1. T		Message
	7 0.226337	10.10.0.1	10.10.0.2	TCP	66	bgp > 59110	[ACK]	Seq=429496	
8	8 1. <mark>11</mark> 5588	10.10.0.1	10.10.0.2	BGP	138	OPEN Message	, KE	PALIVE Mes	
	9 1.115648	10.10.0.2	10.10.0.1	ТСР	66	59110 > bgp	[ACK]	Seq=54 Ac	KEEPALIVE
16	0 1.116089	10.10.0.2	10.10.0.1	BGP	104	KEEPALIVE Me	essage	, KEEPAL EI	Message
	1 1.192189	10.10.0.1	10.10.0.2	TCP	66	bgp > 59110	[ACK]	Seq=1 Ack	Wiessage
1	2 1.228733	10.10.0.1	10.10.0.2	TCP	66	bap > 59110	[ACK]	Seq=1 Ack=	92
1	3 1.229402	10.10.0.1	10.10.0.2	BGP	85	KEEPALIVE Me	issage		
14	4 1.259803	10.10.0.2	10.10.0.1	TCP	66	59110 > bgp	[ACK]	Seq=92 Ac	UPDATE
1	5 1.360882	10.10.0.1	10.10.0.2	TCP	66	bgp > 59110	[ACK]	Seq=20 Ac	Message
16	6 2.130025	10.10.0.2	10.10.0.1	BGP	177	UPDATE Messa	ige, 🄱	PDATE Mess	
1	7 2.193100	10.10.0.1	10.10.0.2	BGP	172	UPDATE Messa	ige, 🌡	PDATE Messa	ge
18	8 2.193150	10.10.0.2	10.10 <mark>.0.1</mark>	TCP	66	59110 > bgp	[ACK]	Seq=203 Ac	<=1

BGP messages are transferred as expected

Evaluation result cont.

• Dump of flows in each node

- GreenGW

# route -n								
Kernel IP rou	ting table							
Destination	Gateway	Genmask	Flags	Metric	Ref	Use Iface	(
0.0.0.0	10.10.0.1	0.0.0.0	UG	0	0	0 eth0		Routing
10.10.0.0	0.0.0.0	255.255.0.0	U	0	0	0 eth0		information
10.20.0.0	10.10.0.1	255.255.0.0	UG	1	0	0 eth0		mormation
20.10.0.0	0.0.0.0	255.255.0.0	U	0	0	0 eth1		of AS1030
30.10.0.0	10.10.0.1	255.255.0.0	UG	0	0	0 eth0		(OES)
40.10.0.0	10.10.0.1	255.255.0.0	UG	0	0	0 eth0		(013)
0 F 0								

– OFS

Switch# ovs-ofctl dump-flows br0 --protocol=OpenFlow13
OFPST_FLOW reply (OF1.3) (xid=0x2):
 cookie=0x0, duration=216.25s, table=0, n_packets=0, n_bytes=0,
 priority=1000,ip,nw_dst=40.10.0.0/16 actions=set_field:00:0a:85:07:0c:34 >eth_dst,set_field:00:1e:08:08:93:38->eth_src,output:4
 cookie=0x0, duration=200.05s, table=0, n_packets=0, n_bytes=0,
 priority=1000,ip,nw_dst=20.10.0.0/16 actions=set_field:00:0a:85:07:0c:38 >eth_dst,set_field:00:1e:08:08:93:36->eth_src,output:2
 cookie=0x0, duration=218.471s, table=0, n_packets=31, n_bytes=2692,

Routing information of AS1020 (Green)

cookie=0x0, duration=218.471s, table=0, n_packets=31, n_bytes=2692, priority=10 actions=CONTROLLER:65535

Routing information are transferred as expected

Conclusion and future work

- Conclusion
 - We proposed the implementation model of AP-GW which can overcome the problems of current SDN implementation model.
 - We introduced the specific design and implementation of our prototype and demonstrated that our implementation can handle conventional network protocols.
- Future work
 - Implementation of distributed controller for the wide area network.
 - Evaluation using real monitored data in the service network.
 - Overcome the problem of small flow entry size of current OpenFlow switch.

