Caching Algorithm for Content-Oriented Networks Using Prediction of Popularity of Content

Hiroki Nakayama[†], Shingo Ata^{††}, Ikuo Oka^{††} [†]BOSCO Technologies Inc. ^{††}Osaka City University

BOSCO

echnologies

Background

- Cache has an important roll to increase the performance of deployment service.
 - Reduces the load of server and increases the performance.
 - Contents Centric Network (CCN), Contents Delivery Network (CDN)
 - Algorithm such as Least Recently Used (LRU) and Least Frequently Used (LFU) causes waste usage of cache capacity.
- It is important to consider the popularity of each contents to use cache efficiently.

- Caching algorithm using content's popularity
 - WAVE: Popularity-based and Collaborative In-network Caching for Content-Oriented Networks (K. Cho, 2012)
 - Optimal Cache Allocation for Content-Centric Networking (Y. Wang, 2013)
- The fluctuations of popularity of content depending on time is not considered enough.
 - Only using the past popularity is difficult to handle the fluctuations of popularity.

Use predicted value of content's popularity

Objective

- Evaluate cache algorithm using prediction value of content's • demand.
 - Decision of cache replacement is made by each cache nodes.
 - Content replacement is conducted based on prediction value.
- Predicting the popularity of every content is difficult. \bullet
 - The number of contents exceeds 2 billion^{*1} and increasing day by day.
 - Propose the selection algorithm to decide which content should be predicted without lack of cache efficiency.

^{*1}G. Gursun et al., "Describing and Forecasting Video Access Patterns," INFOCOM'12 March 2012

Caching algorithm using prediction

- We use the AutoRegressive (AR) model for prediction.
 - Burg method has been used to estimate AR coefficients.
 - p = 5 has been used for order of model.

Efficiency of using prediction

• Evaluate the cache hit rate in the CCN.

- Using prediction is effective to increase cache usage.
 - Predicting whole content requires large computational costs.

Reduce the computational cost by limiting target to predict.

Reducing number of prediction target

- Most of the low demanded contents will never cached with the prediction cache.
 - Computational cost could be reduced simply by not predicting such contents.
- Key point on limiting number of prediction target.
 - Lack of performance by limiting prediction target should be minimized.
 - The number of contents which should be predicted.
 - The popularity of content will fluctuate rapidly.

7

Estimate number of prediction target

- Estimate the necessary number of contents to be predicted.
 - Corresponds to the number of contents cached at least once in the each time slot.

- The popularity of contents could change rapidly.
 - Simply limit the prediction target to twice of average number of cacheable contents.

Target limitation with 2 observation states

• Use 2 observation states for prediction target limitation.

- Prediction Target (PT)
 - Contents which will be predicted and cached.
- Selection Target (ST)
 - Unpredicted contents.
 LFU is used for handling.

Transit condition

- a The content that is not cached for specific time will be transit.
- b Transit frequently required contents based on LFU.

9

By only predict the contents belonging to PT, the computational cost will be reduced greatly.

The influence of prediction error

- The contents transited from ST does not have enough popularity.
 - It causes an inaccurate estimation of prediction model and large prediction error.
- Evaluate how the prediction error affects.

• Prediction error makes less cache performance.

Use state that observe the popularity of content with time series

Target limitation with 3 observation states

- Prediction Target
 - Contents which will be predicted and cached.
- Candidate Target
 - Contents to observe the popularity as time series.
- Selection Target
 - Unpredicted contents. LFU is used for handling.

Transit condition

А	The content that is not cached for specific time will be transit.
В	The most popular content will be transit.
С	The content that has not been transit to PT will be transit.
D	Transit frequently required contents based on LFU.

Simulation environment

- Prepared CCN simulator based on ccnSim^{*1}.
 - Implemented caching algorithm including ProbCache^{*2} and WAVE.
- Prepare YouTube-like simulation environment^{*1}.

Parameter	Value	Unit
Requirement frequency	Avg 1	Hz
Amount of content	1,000,000	
Size of contents	Avg 10	MB
Size of chunk	0.1	MB
Cache capacity	10,000	MB
Number of cache node	46	
Prediction time unit $(\Delta \tau)$	10	Min

- The real monitored data is used for content's popularity.
 - Collected query messages in Gnutella as the data set.

– The measurement was conducted from 2012/4/26 to 2012/9/12.

^{*1} D. Rossi et al., "Caching performance of content centric net- works under multi-path routing (and more),"

*² I. Psaras et al., "Probabilistic In-Network Caching for Information-Centric Networks," ICN'12, August 2012

^{*3} N. Spring et al., "Measuring ISP topologies with Rocketfuel," SIGCOMM 2002, August 2002

Performance evaluation for selection algorithm

- 2 state selection algorithm occurs a lack of cache hit rate where 3 state selection algorithm does not.
 - Increasing prediction accuracy by using observation period is important.
- There are lack on the number of distributed content type by using selection algorithm.
 - Selection algorithm prevents to cache unpopular contents.

The influence of prediction time window size

• The performance of selection algorithm could change due to the interval of updating prediction.

Time granularity of prediction [min]

- There is no big difference between the cache hit rate of 10 minutes and that of 30 minutes.
- Not only considering the popularity but also predicting is important to gain performance.

Comparison evaluation with existing algorithm

- Cache hit rate is increased by about 1.2 times comparing with existing methods.
- The unused cache will be reduced by using selection algorithm.
 - Selection algorithm can avoid to cache unpopular contents.

15

The usage of cache became more efficient by using prediction and selection algorithm.

Evaluation focused on content's popularity

- Popular contents should be cached on several cache nodes.
 - It is important on the aspect of efficient usage of cache.

Conclusions & future works

- Conclusions
 - We have introduced the cache algorithm using prediction and selection algorithm to increase performance of cache with small computational cost.
 - We have demonstrated that the cache hit rate is increased about 1.6 times.
 - The result also indicates that our proposal method is effective on reducing number of unused cache.
- Future works
 - Evaluate the performance by using other prediction model.
 - More evaluation on computational cost.

Caching algorithm using prediction

- We use the AutoRegressive (AR) model for prediction.
 - Burg method has been used to estimate AR coefficients.
 - p = 5 has been used for order of model.

$$x_t = \sum_{i=1}^p \alpha_i x_{t-i} + \epsilon_t$$

 x_t : trend data α_i : AR coefficients ϵ_t : residuals

- p : order of parameters
- The chunk of content will be cached based on its popularity.
 - Chunk is the part of content.
 - Demand of each chunk is based on that of content.
 - Cache with smallest value will be replaced.

19

Simulation environment

- Prepared CCN simulator based on ccnSim^{*1}.
 - Implemented caching algorithm including ProbCache^{*2} and WAVE.
- Prepare YouTube-like simulation environment^{*1}.

Parameter	Value	Unit
Requirement frequency	Avg 1	Hz
Amount of content	1,000,000	
Size of contents	Avg 10	MB
Size of chunk	0.1	MB
Cache capacity	10,000	MB
Number of cache node	46	
Prediction time unit ($\Delta \tau$)	10	Min

• The real network topology that is publicly available through Rocketfuel^{*3} is used.

*1 D. Rossi et al., "Caching performance of content centric net- works under multi-path routing (and more),"
 *2 I. Psaras et al., "Probabilistic In-Network Caching for Information-Centric Networks," ICN'12, August 2012
 *3 N. Spring et al., "Measuring ISP topologies with Rocketfuel," SIGCOMM 2002, August 2002

Dataset

- The real monitored data is used for content's popularity.
 - Collected query messages in Gnutella as the data set.
 - The measurement was conducted from 2012/4/26 to 2012/9/12.

21

Evaluation focused on content's popularity

- Popular contents should be cached on several cache nodes.
 - It is important on the aspect of efficient usage of cache.

