

SD-WAN + Business Forum May 4, 2017

Understanding Forwarding Performance Characteristics of NFV-nodes

Ryota Kawashima

Nagoya Institute of Technology, Japan

Tsunemasa Hayashi & Hiroki Nakayama

BOSCO Technologies, Inc., Japan

How much the node efficiently forwards packets ?

- * Backgrounds
- Evaluation
 - Methods
 - Targets
 - Results
- ✤ Guidelines
 - Hardware
 - Software
- Conclusion

Network Softwarization

Everything is "Software-based"

Performance Concerns

Lower throughput

Higher latency

Instability

Promising Technologies

Which technologies should we use?

Backgrounds

- Methods
- Targets
- Results
- Guidelines
 - Hardware
 - Software
- Conclusion

Methods

VNF forms

Combinations

Packet I/O x Virtual I/O x Forwarding

Environment

• Single UDP flow (unidirectional)

Machine specs

Physical	Machine A	Machine B
OS	CentOS 7.3 (3.10.0-514.6.1.x86_64)	
CPU	Core i7-6700K <u>4.00 GHz</u>	Xeon E5-2630 v4 2.20 GHz
	(4 cores with HT)	(2x10 cores w/o HT)
Memory	32 GB (DDR4-2133)	128 GB (DDR4-2133)
VMM	KVM	
NIC	Intel XL710 (i40e) PCI Express 3.0 (x8)	

Virtual	VM (on Machine A)	VM (on Machine B)
OS	CentOS 7.3 (3.10.0-514.6.1.x86_64)	
vCPU	3 cores	4 cores
Memory	4 GB	
vNIC	virtio-net (for virtio) / i40evf (for SR-IOV)	

Throughput Results (DuT: Machine B)

Low throughput for short packets (<< 59.5 Mpps)

Throughput variations in DPDK-based switches

SR-IOV is faster but less stability

Latency/Jitter Results (DuT: Machine B)

Latency/Jitter variations in DPDK-based switches

Lagopus and L2FWD showed worse latency/jitter

Effects of CPU Speed Differences

Backgrounds

Evaluation

- Methods
- Targets
- Results
- Guidelines
 - Hardware
 - Software
- Conclusion

Hardware

CPU speed is absolutely critical for network performance

Memory/PCIE† bus speed is not a bottleneck

+ PCIE 3.0 (x16) is needed for dual-port 40G NIC (bidirectional)

SR-IOV is not preferable for production use

The performance is better, but ...

Software

How to use DPDK is important !

OVS-DPDK is well-balanced for throughput and latency/jitter

VM – Hypervisor comm. is the performance bottleneck

Backgrounds

Evaluation

- Methods
- Targets
- Results
- ✤ Guidelines
 - Hardware
 - Software

Conclusion

Research

- Throughput for short packets
- Novel methods for VM – Hypervisor communications

Operation

- Using faster CPU
- OVS-DPDK/vhost-user is a reasonable approach
- Avoiding the use of SR-IOV

